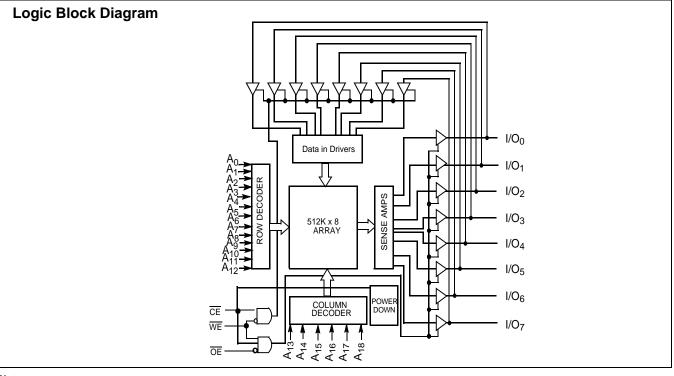


Features

- Very high speed
 - 45 ns
- Voltage range: 4.5V–5.5V
- Pin-compatible with CY62148B
- Ultra low standby power
 - Typical standby current: 1 μA
 - Maximum standby current: 7 μA (Industrial)
- Ultra-low active power
 - Typical active current: 2.0 mA @ f = 1 MHz
- Easy memory expansion with \overline{CE} , and \overline{OE} features
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Available in Pb-free 32-pin SOIC and 32-pin TSOP II packages

4-Mbit (512K x 8) Static RAM

Functional Description^[1]


The CY62148E is a high-performance CMOS static RAM organized as 512K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected (CE HIGH).

To write to the device, take Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

To read <u>from</u> the device, take Chip Enable $\overline{(CE)}$ <u>and</u> Output Enable $\overline{(OE)}$ LOW while forcing Write Enable $\overline{(WE)}$ HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in <u>a</u> high-impedance state when the <u>device</u> is deselected (CE HIGH), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE LOW and WE LOW).

The CY62148E is available in 32-pin SOIC and 32-pin TSOP II packages.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05442 Rev. *D

Pin Configuration^[2]

32-pin SOI Top V		32-pin TSOP II Pinout Top View	
$\begin{array}{c c} A_{17} \bigsqcup 1 \\ A_{16} \bigsqcup 2 \\ A_{14} \bigsqcup 4 \\ A_{7} \bigsqcup 5 \\ A_{6} \bigsqcup 6 \\ A_{5} \bigsqcup 7 \\ A_{4} \bigsqcup 9 \\ A_{2} \bigsqcup 10 \\ A_{1} \bigsqcup 11 \\ A_{0} \bigsqcup 12 \\ I/O_{0} \bigsqcup 14 \\ I/O_{2} \bigsqcup 15 \\ V_{SS} \bigsqcup 16 \end{array}$	$\begin{array}{c} 32 \\ 31 \\ 31 \\ 30 \\ 30 \\ 31 \\ 415 \\ 30 \\ 31 \\ 415 \\ 30 \\ 31 \\ 415 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ $	$\begin{array}{c} A_{17} \ \square & \bigcap_{1}^{\circ} \\ A_{16} \ \square & 2 \\ A_{14} \ \square & 3 \\ A_{12} \ \square & 4 \\ A_{7} \ \square & 5 \\ A_{6} \ \square & 6 \\ A_{5} \ \square & 7 \\ A_{4} \ \square & 8 \\ A_{3} \ \square & 9 \\ A_{2} \ \square & 10 \\ A_{1} \ \square & 11 \\ A_{0} \ \square & 12 \\ I/O_{0} \ \square & 13 \\ I/O_{1} \ \square & 14 \\ I/O_{2} \ \square & 15 \\ V_{SSL} \ \square & 16 \end{array}$	$\begin{array}{c} 32 \\ 31 \\ 31 \\ 30 \\ 31 \\ 30 \\ 415 \\ 30 \\ 415 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 3$

Product Portfolio

					Power Dissipation					
				Speed	Operating I _{CC} (mA)					
Product	V	_{CC} Range (V)	(ns)	f = 1	MHz	f = f	max	Standby	I _{SB2} (μΑ)
	Min.	Typ. ^[3]	Max.		Typ. ^[3]	Max.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62148E-45LL	4.5	5.0	5.5	45 ns	2	2.5	15	20	1	7
CY62148E-55LL ^[4]	4.5	5.0	5.5	55 ns	2	3	15	25	1	20

Shaded areas contain preliminary information.

Notes:
2. NC pins are not connected on the die.
3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.
4. Automotive product information is Preliminary.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to + 150°C
Ambient Temperature with Power Applied55°C to + 125°C
Supply Voltage to Ground Potential0.5V to 6.0V (V _{CCMAX} + 0.5V)
DC Voltage Applied to Outputs in High-Z State ^[5,6] 0.5V to 6.0V ($V_{CC MAX} + 0.5V$)
DC Input Voltage ^[5,6] 0.5V to 6.0V (V _{CC MAX} + 0.5V)

Electrical Characteristics (Over the Operating Range)

Output Current into Outputs	(LOW))
-----------------------------	-------	---

Static Discharge Voltage	> 2001V
(per MIL-STD-883, Method 3015)	

Latch-up Current.....> 200 mA

Operating Range

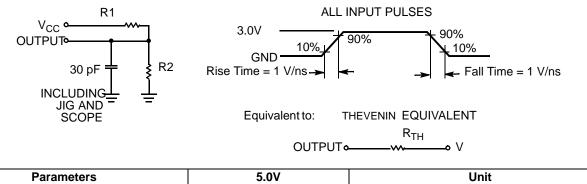
Device	Range	Ambient Temperature	V_{CC} ^[8]	Speed
CY62148E	Industrial	–40°C to +85°C	4.5V to	45 ns
	Automotive	–40°C to +125°C	5.5V	55 ns

		45 ns (Industrial) 55 ns (Automotive)			otive)					
Parameter	Description	Test Co	nditions	Min.	Typ. ^[3]	Max.	Min.	Typ. ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1 mA	$V_{CC} = 4.5V$	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 4.5V$			0.4			0.4	V
V _{IH}	Input HIGH Voltage	$V_{CC} = 4.5V$ to ξ	5.5V	2.2		V _{CC} +0.5	2.2		$V_{CC} + 0.5$	V
V _{IL}	Input LOW voltage	$V_{CC} = 4.5V$ to ξ	5.5V	-0.5		0.8	-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$		-1		+1	-4		+4	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_C$ Disabled	_C , Output	-1		+1	-4		+4	μA
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$		15	20		15	25	mA
	Supply Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		2	2.5		2	3	
I _{SB2}	Automatic CE Power-down Current — CMOS Inputs	$\label{eq:constraint} \begin{split} \overline{CE} &\geq V_{CC} - 0.2 \\ V_{IN} &\geq V_{CC} - 0.2 \\ V_{IN} &\leq 0.2 V, \\ f &= 0, \ V_{CC} = V_{C} \end{split}$	2V or		1	7		1	20	μΑ

Capacitance (For All Packages)^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

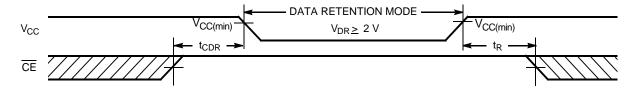
Thermal Resistance^[8]


Parameter	Description	Test Conditions	SOIC Package	TSOP II Package	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[8]	Still Air, soldered on a 3 × 4.5 inch, 2-layer printed circuit board	75	77	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case) ^[8]		10	13	°C/W

Notes:

Notes:
 5. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns for I ≤ 30 mA.
 6. V_{IH(max)} = V_{CC}+0.75V for pulse durations less than 20 ns.
 7. Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.
 8. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


T arameters	5.01	Onit
R1	1800	Ω
R2	990	Ω
R _{TH}	639	Ω
V _{TH}	1.77	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[3]	Max.	Unit
V _{DR}	V _{CC} for Data Retention			2			V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR}$	Ind'l		1	7	μA
		$ \begin{array}{l} \frac{V_{CC}=V_{DR}}{CE\geq V_{CC}-0.2V}, \\ V_{IN}\geq V_{CC}-0.2V \text{ or } V_{IN}\leq 0.2V \end{array} $	Auto		1	20	
t _{CDR} ^[8]	Chip Deselect to Data Retention Time			0			ns
t _R ^[9]	Operation Recovery Time			t _{RC}			ns

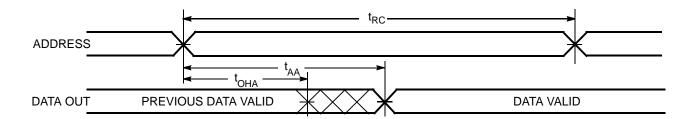
Shaded areas contain preliminary information.

Data Retention Waveform

Note:

ſ

9. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} \ge 100 µs or stable at V_{CC(min.)} \ge 100 µs.



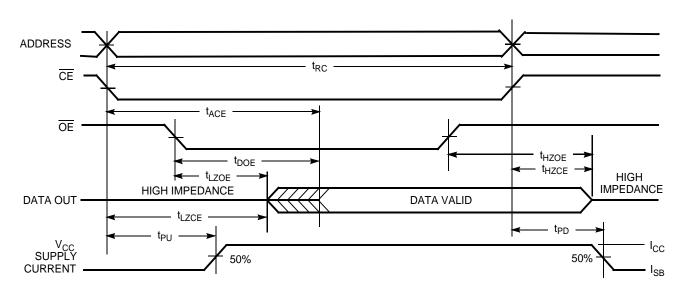
Switching Characteristics (Over the Operating Range)^[10]

		45 ns (Ir	ndustrial)	55 ns (Au		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle						_
t _{RC}	Read Cycle Time	45		55		ns
t _{AA}	Address to Data Valid		45		55	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		45		55	ns
t _{DOE}	OE LOW to Data Valid		22		25	ns
t _{LZOE}	OE LOW to LOW Z ^[11]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[11, 12]		18		20	ns
t _{LZCE}	CE LOW to Low Z ^[11]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[11, 12]		18		20	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		45		55	ns
Write Cycle ^[13]		·				-
t _{WC}	Write Cycle Time	45		55		ns
t _{SCE}	CE LOW to Write End	35		35		ns
t _{AW}	Address Set-up to Write End	35		35		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	35		35		ns
t _{SD}	Data Set-up to Write End	25		25		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[11, 12]		18		20	ns
t _{LZWE}	WE HIGH to Low-Z ^[11]	10		10		ns

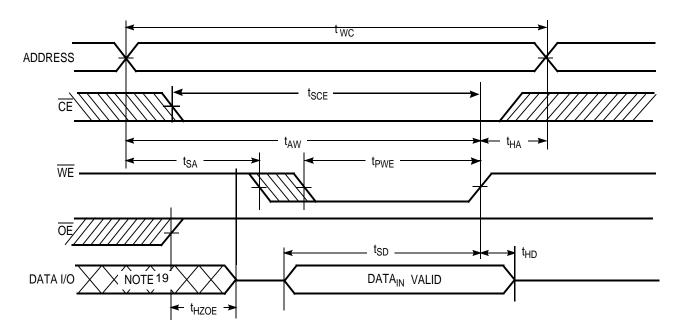
Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[14,15]

Notes:


- Notes:
 10. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3V, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
 11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 12. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
 13. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

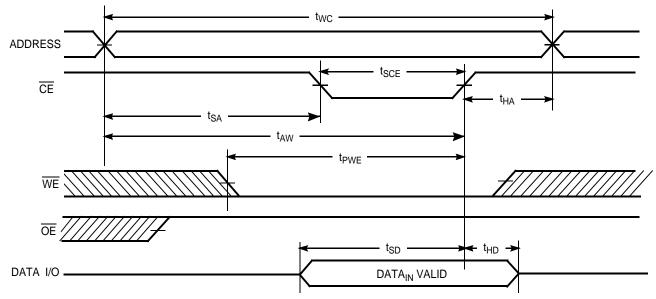
- 14. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 15. \overline{WE} is HIGH for read cycle.



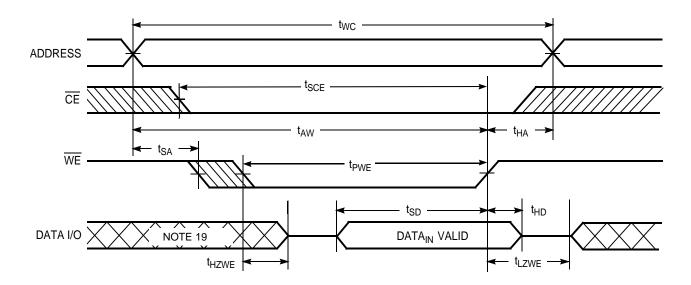
Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled)^[15,16]

Write Cycle No. 1(WE Controlled)^[13,17,18]


Notes:

16. Address valid prior to or coincident with \overline{CE} transition LOW. 17. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 18. If \overline{CE} goes HIGH simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state. 19. During this period, the I/Os are in output state and input signals should not be applied.



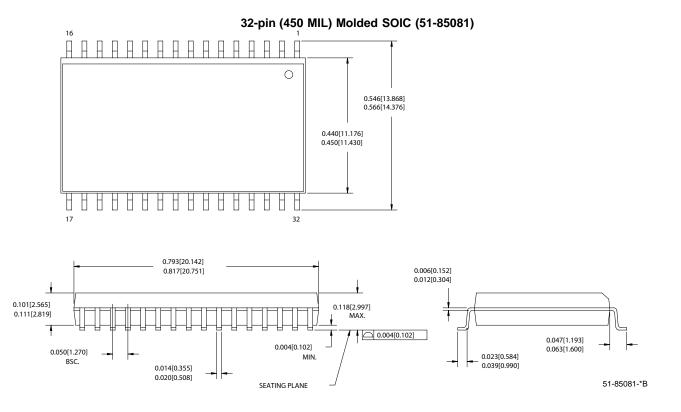
Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)^[13,17,18]

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[18]

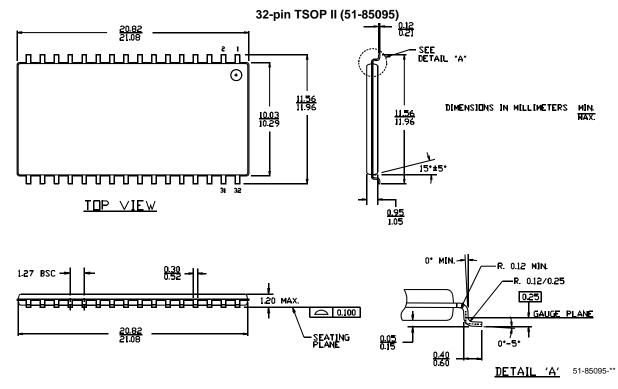
Truth Table

CE	WE	OE	I/O's	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62148ELL-45SXI	51-85081	32-pin Small Outline Integrated Circuit (Pb-Free)	Industrial
	CY62148ELL-45ZSXI	51-85095	32-pin Thin Small Outline Package II (Pb-Free)	
55	CY62148ELL-55SXE	51-85081	32-pin Small Outline Integrated Circuit (Pb-Free)	Automotive
	CY62148ELL-55ZSXE	51-85095	32-pin Thin Small Outline Package II (Pb-Free)	


Please contact your local Cypress sales representative for availability of these parts

Package Diagrams

Package Diagrams (continued)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201580	01/08/04	AJU	New Data Sheet
*A	249276	See ECN	SYT	Changed from Advance Information to Preliminary Moved Product Portfolio to Page 2 Added RTSOP II and Removed FBGA Package Changed V_{CC} stabilization time in footnote #7 from 100 µs to 200 µs Changed I _{CCDR} from 2.0 µA to 2.5 µA Changed typo in Data Retention Characteristics(t _R) from 100 µs to t _{RC} ns Changed t _{OHA} from 6 ns to 10 ns for both 35 ns and 45 ns Speed Bin Changed t _{HZOE} , t _{HZWE} from 12 to 15 ns for 35 ns Speed Bin and 15 to 18 r for 45 ns Speed Bin Changed t _{SCE} from 25 to 30 ns for 35 ns Speed Bin and 40 to 35 ns for 45 r Speed Bin Changed t _{HZCE} from 12 to18 ns for 35 ns Speed Bin and 15 to 22 ns for 4 ns Speed Bin Changed t _{SD} from 15 to 18 ns for 35 ns Speed Bin and 20 to 22 ns for 4 ns Speed Bin Changed t _{SD} from 15 to 18 ns for 35 ns Speed Bin and 20 to 22 ns for 45 ns Speed Bin Changed t _{DOE} from 15 to 18 ns for 35 ns Speed Bin Changed t _{DOE} from 15 to 18 ns for 35 ns Speed Bin Changed t _{DOE} from 15 to 18 ns for 35 ns Speed Bin Changed t _{DOE} from 15 to 18 ns for 35 ns Speed Bin Changed t _{DOE} from 15 to 18 ns for 35 ns Speed Bin
*В	414820	See ECN	ZSD	Changed from Preliminary to Final Changed the address of Cypress Semiconductor Corporation on Page #1 from "3901 North First Street" to "198 Champion Court" Removed 35ns Speed Bin Removed "L" version of CY62148E Changed I _{CC} (Typ) value from 1.5 mA to 2 mA at f=1 MHz Changed I _{CC} (Max) value from 2 mA to 2.5 mA at f=1 MHz Changed I _{CC} (Typ) value from 12 mA to 15 mA at f=f _{max} Removed I _{SB1} spec from the Electrical characteristics table Changed I _{SB2} Typ. values from 0.7 μ A to 1 μ A and Max. values from 2.5 μ to 7 μ A Modified footnote #4 to include current limit Removed redundant footnote on DNU pins Changed the AC testload capacitance from 100 pF to 30 pF on page #4 Changed test load parameters R1, R2, R _{TH} and V _{TH} from 1838 Ω , 994 Ω , 645 Ω and 1.75V to 1800 Ω , 990 Ω , 639 Ω and 1.77V Changed I _{CCDR} from 2.5 μ A to 7 μ A Added I _{CCDR} typical value Changed t _{LZOE} from 3 ns to 5 ns Changed t _{LZCE} from 30 ns to 35 ns Changed t _{LZCE} from 30 ns to 35 ns Changed t _{SD} from 22 ns to 25 ns Updated the ordering information table and replaced Package Name colum with Package Diagram
*C	464503	See ECN	NXR	Included Automotive Range in product offering Updated the Ordering Information
*D	485639	See ECN	VKN	Corrected the operating range to 4.5V - 5.5V on page# 3